
Compressing Color Data for Voxelized
Surface Geometry

Dan Dolonius , Erik Sintorn , Viktor K€ampe , and Ulf Assarsson

Abstract—We explore the problem of decoupling color information from geometry in large scenes of voxelized surfaces and of

compressing the array of colors without introducing disturbing artifacts. In this extension of our I3D paper with the same title [1], we first

present a novel method for connecting each node in a sparse voxel DAG to its corresponding colors in a separate 1D array of colors,

with very little additional information stored to the DAG. Then, we show that by mapping the 1D array of colors onto a 2D image using a

space-filling curve, we can achieve high compression rates and good quality using conventional, modern, hardware-accelerated

texture compression formats such as ASTC or BC7. We additionally explore whether this method can be used to compress voxel colors

for off-line storage and network transmission using conventional off-line compression formats such as JPG and JPG2K. For real-time

decompression, we suggest a novel variable bitrate block encoding that consistently outperforms previous work, often achieving two

times the compression at equal quality.

Index Terms—Voxel, sparse voxel octree, directed acyclic graph, space filling curve, color compression, ASTC, BC, JPEG, PNG

Ç

1 INTRODUCTION

SPARSE Voxel Octrees (SVOs) have become increasingly
popular, e.g., for raytracing indirect illumination and

glossy reflections [2]. In 2013, Sparse Voxel DAGs were
introduced, which heavily compress voxelized geometric
information [3]. Only recently, it has been investigated how
to connect the DAG’s geometric data with material data,
and how to compress the material data separately [4], [5].

Our first contribution in this paper is a novel method for
connecting material information to DAGs, which does not
increase the size of the DAG by more than 0.1 percent com-
pared to the work by K€ampe et al. [3]. This is a significant
improvement over previous work [4], where the additional
data roughly doubles the size of the DAG or, at the expense
of complicating addressing logic and reduced rendering
performance, causes an overhead of 30 percent.

Next, we concentrate on the compression of voxel color
data. Although many types of material properties, such as
surface normals or roughness, should be compressible with
our methods, we focus on diffuse colors, since a fair evalua-
tion of the quality of all types of material properties would
be out of scope for this article. While the voxel-color data
certainly corresponds to colors in a 3D spatial domain,
algorithms intended for compressing traditional 3D tex-
tures, or other volumetric data, will perform poorly since
the information is very sparse. The colors are actually
distributed over two-dimensional surfaces, but traditional

2D compressionmethods do not directly apply. Instead, after
decoupling the geometry and color data, we are left with a
compact one dimensional array which (depending on how
the decoupling is done) may still have ample coherence.

Our second contribution enables, for the first time, efficient
compression of voxelized surface colors using conventional
image compression methods. By mapping the one-dimen-
sional array to a two-dimensional image, using a space-filling
curve, much of the coherency can be retained in the image and
we can therefore apply standard 2D image compressionmeth-
ods. We first demonstrate that modern, hardware accelerated,
texture compression formats (BC7 and ASTC) can compress
the data to 33 percent with very little loss in quality. This data
can still be immediately accessed on the GPU with no extra
performance cost. Next we show that conventional off-line
image compression techniques can compress the data down
to around 10 percent, with reasonable quality, in cases where
the data shall be stored to disk or transmitted over a network.

Our third contribution is a novel compression format
where we instead attempt to compress the array of colors
immediately, without transforming it to an image. In the
spirit of many 2D-block based algorithms, this algorithm
divides the array of colors into blocks of varying sizes such
that each block can be represented by two endpoint colors
and one weight per original color which interpolates
between these, without introducing an error higher than a
specified threshold. We compare two versions of this algo-
rithm. In the first, the number of bits per weight is fixed glob-
ally, and in the second, the number of bits per weight is
chosen per block to minimize the memory consumption.
Compared to previous work [4], our compressed data is usu-
ally less than half the size at similar quality, is simpler to
implement, and scales to extremely high compression rates,
as can be seen in Fig. 1. The colors can be decompressed in
less than amillisecond at 10242 resolution on a GTX1080.

� The authors were with the Department Computer Science and Engineering,
Chalmers University of Technology, Gothenburg 412 58, Sweden.
E-mail: {dolonius, erik.sintorn, kampe, uffe}@chalmers.se.

Manuscript received 31 Mar. 2017; revised 14 July 2017; accepted 26 July
2017. Date of publication 18 Aug. 2017; date of current version 31 Dec. 2018.
(Corresponding author: Dan Dolonius.)
Recommended for acceptance by C. Wyman.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TVCG.2017.2741480

1077-2626� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1270 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 25, NO. 2, FEBRUARY 2019

https://orcid.org/0000-0001-6683-9819
https://orcid.org/0000-0001-6683-9819
https://orcid.org/0000-0001-6683-9819
https://orcid.org/0000-0001-6683-9819
https://orcid.org/0000-0001-6683-9819
https://orcid.org/0000-0003-3784-3936
https://orcid.org/0000-0003-3784-3936
https://orcid.org/0000-0003-3784-3936
https://orcid.org/0000-0003-3784-3936
https://orcid.org/0000-0003-3784-3936
https://orcid.org/0000-0002-2350-4784
https://orcid.org/0000-0002-2350-4784
https://orcid.org/0000-0002-2350-4784
https://orcid.org/0000-0002-2350-4784
https://orcid.org/0000-0002-2350-4784
https://orcid.org/0000-0002-5427-7406
https://orcid.org/0000-0002-5427-7406
https://orcid.org/0000-0002-5427-7406
https://orcid.org/0000-0002-5427-7406
https://orcid.org/0000-0002-5427-7406
mailto:

2 PREVIOUS WORK

Octrees have been used to represent 3D scenes for over
three decades [6], [7], [8]. Despite octrees being a sparse for-
mat in itself, very high resolutions are non-trivial to fit in
memory and render [9]. We will only cover the most related
methods that use voxels as the representing primitive rather
than points [10] or triangles [11].

Sparse Voxel Octrees. Store voxelized objects in an octree for-
mat, where each node represents a non-empty voxel at that
hierarchical level and, potentially, also stores its associated
material information [12], [13]. Laine andKarras [14] introduce
Efficient Sparse Voxel Octrees., which improve on the geometric
shapes by storing contour data in each voxel. They also com-
press color and normal blocks of 23 voxels using DXT-based
compression. Crassin et al. [2] use cone tracing in an SVO to
compute real-time ambient occlusion and indirect lighting.

Merging Common Subtrees. Webber and Dillencourt [15]
compress binary cartographic images by using quadtrees
and common-subtree merging, and Parsons [16] use cyclic
quadgraphs to represent 2D straight lines. Parker et al. [17]
extend to using common subtree merging for voxel octrees
and achieve compression for axis-aligned regular struc-
tures, such as flat electrical circuits.

Sparse Voxel DAGs. Are based on the important observa-
tion that by removing the material information from the
voxel data, common subtree merging often becomes up to
three orders of magnitude more efficient [3]. Apart from
direct visualization of extremely high-resolution models
(128K3) lacking colors, DAGs with only geometry can for
instance be used for ambient occlusion and shadows [18],
[19]. Jaspe Villanueva et al. [20] significantly improve on the
compression by also searching for reflection symmetry of
subDAGs in the x, y, and z directions. Furthermore, they
use a frequency-based pointer compaction per hierarchy
level and in total reduces the memory consumption up to
two times. These optimizations can be used orthogonally
with our suggested technique.

Decoupling Geometry and Material Data. A problem with
DAGs is that they can only efficiently represent the geometric
information in the DAG. Material information for the mod-
els is often desired, and an efficient connection between the
DAG nodes and per voxel colors can be non-trivial. The rea-
son is that simply inserting color indices into the nodes will
destroy the subtree-merging opportunities.

An early work in this direction is the Perfect Spatial Hash-
ing suggested by Lefebre et al. [21]. Their method allows a
lookup from any 3D point in space to a 2D image using hash
tables. While that method may well be applicable to decou-
pling voxel geometry and colors, the new position for a voxel
color in the lookup texture will inherently be random. This is
not good for large data-sets since it means that caching will
work poorly, butmore importantly, for our purposes, itmeans
that any coherence existing in the original voxel colors will be
lost, which complicates subsequent compression of the data.

Very recently, Williams and Dado et al. presented two
separate approaches to connect voxels with colors [4], [5] by
inserting index information that does not harm the merging
possibilities. Each node’s color index is defined by the
node’s order according to a fixed-order full tree traversal of
the corresponding SVO. Both methods insert a pre-com-
puted value per child pointer in the DAG, while our
approach allows using only a value per node, which is an
important difference, since the former roughly doubles the
amount of data in the DAG node, leading to nearly a dou-
bling of the DAGmemory consumption [4].

In short, Williams stores, per pointer, the number of
empty SVO voxels in a corresponding full subtree. These val-
ues reach 1015 for scenes of 128K3 and heavily influence the
node sizes. They also need an indirection table that grows
exponentially, requiring hundreds of MB even for small res-
olutions of 1K3. That solution is therefore infeasible for large
resolutions. The solution suggested by Dado et al. will be
explained and further discussed in the next section.

Compressing Voxel Colors. In addition, Dado et al. suggest
a method for compressing voxel attributes. They first quan-
tize all colors that exist in the scene to obtain a subset of col-
ors which are chosen as the global palette. Next, they divide
the original array of colors into blocks, where each block
will be associated with a smaller block palette, which in turn
points into the global palette. If possible, several blocks can
share the same block palette. Each block also points into a
compact list of offsets to the block-palette with one entry
per original color. The complete data structure is illustrated
in Fig. 2. Obtaining good compression rates with high qual-
ity requires that the color space can be quantized to a suffi-
ciently small subset, and that there is a possibility for many
blocks to share block-palettes.

Volume Visualization. Of semi-transparent data in grids is
used in, for instance, medical visualization [22], and a

Fig. 1. The EPICCITADEL scene, with precomputed illumination, voxelized at resolution 327683. a) Reference, 24-bit colors, 2.4GB . b) Our BC7 com-
pression, 800 MB (30 percent), MS-SSIM: 0.99. c) Our variable bitrate block encoding, 219 MB (9.03 percent), MS-SSIM: 0.97. d) The method by
Dado et al. [4] 456 MB (18.8 percent), MS-SSIM: 0.92.

DOLONIUS ET AL.: COMPRESSING COLOR DATA FOR VOXELIZED SURFACE GEOMETRY 1271

complete overview is outside our scope. However, Balsa
Rodriguez et al. [23] provide a detailed state-of-the-art report
on real-time GPU-based compressed-volume rendering.
What differs these methods from our approach is that they
compress three-dimensional voxel structures (e.g., using
cosine transforms and wavelets), while we target compress-
ing voxelized surface data. Also, thesemethods typically tar-
get grid resolutions of up to about 1K3, while we target
resolutions of, e.g., 32K3, i.e., 5 orders of magnitude higher.

3 DECOUPLING VOXEL GEOMETRY AND

ATTRIBUTES

Whether the geometry information in the voxel data is com-
pressed using a DAG [3] or stored as an SVO, it can be bene-
ficial to decouple geometry information from voxel-
attribute (e.g., color) information. In many cases, only the
geometry information is required for querying (e.g., ray
tracing) the data-structure, and isolating the geometry infor-
mation can lead to better cache coherency. Additionally, if
geometry and color information is stored at the same resolu-
tion, the geometry information will require much less mem-
ory and might, for instance, fit in GPU memory while the
color data does not. By separating geometry and colors, ray-
tracing of the data structure can be performed on the GPU
while the color lookup can be done on the CPU.

When the geometry is stored as a traversable SVO,
decoupling colors is trivial. Since nodes are fixed size, the
index pointing to where the node’s children can be found
can also be used as an index into a separate array of node
colors. When the geometry is stored as a DAG, however, the
index is used to point out a node that may be shared by sev-
eral different SVO subtrees with different color content and
so a direct index can not be stored in the DAG.

Dado et al. [4] achieve their voxel-to-color-index connec-
tion by storing, for each child pointer, the difference in color
index for the child and parent. The actual voxel index can
then simply be computed during traversal by summing all
the offsets along the current path, from the root to the node
(see Fig. 3). Since the offsets will be identical for identical
subtrees, the DAG still compresses as well as without this
information. Unfortunately, the pointers make up the vast
bulk of the information required to store a DAG so, by add-
ing a 32-bit offset to each 32-bit pointer, the size of the DAG
is effectively doubled.

In this section, we will describe a method where the
additional information can mostly be stored in the 24 bits
per node that are otherwise used as padding to achieve
aligned memory accesses, and therefore has a negligible
memory overhead. Even compared to a DAG without
padding, our added information only adds approximately
15 percent overhead. Dado et al. further suggest a method
for compressing their offsets, achieving a memory overhead
of approximately 35 percent [4]. While this could orthogo-
nally be added to our method as well, reducing our over-
head to approximately 5 percent, it complicates addressing
logic and Dado et al. [4] report approximately halved per-
formance in rendering when using compressed offsets.

In this paper, we note that by storing per DAG node a
voxel count (i.e., the number of voxels represented in the
node’s subgraph), the number of voxels preceding a specific
node in a full-tree traversal can be computed using a run-
ning sum of the voxel counts during traversal. We start
with a zero-initialized index and when traversing from any
node, p, to the next node, n, along a path from the root to a
leaf, the voxel counts of all n’s preceding siblings plus one
(for the color occupied by p) are added to the index. Conse-
quently, the index will continuously represent the voxel
index for p. Fig. 3 illustrates the index computation for a
specific node.

Thus, with our method we only need to store an addi-
tional value per node, which is much more memory efficient
in a DAG. In our DAG implementation, for alignment pur-
poses, we use a 32-bit word to store the 8-bit child mask and
then up to eight 32-bit child pointers (one for each non-
empty child). For resolutions up to around 1K3, the voxel-
count value typically fits in the 24 unused bits, leading to
no increased storage requirements. For larger resolutions,
at the upper levels, we store the voxel count in a separate
32-bit word. These nodes are, however, so few that the
memory overhead is typically far less than 0.1 percent.
Thus, we effectively need 24 bits on average per node for
the color connection, compared to 8-12 bytes on average
using Dado et al.’s method. We do not use any pointer nor
offset compression [4], [20], although that could be added
orthogonally. Storing the number of contained sub-nodes in
each node, rather than a color offset per pointer, does
reduce the performance of the color lookup (see Section
5.4). Thus, the better choice depends on whether a roughly
halved geometry DAG size is more important than optimal
performance in the color lookup pass.

Fig. 3. Transforming an SVO to a DAG with color index information. a) A
simple SVO with nodes labeled with their depth-first order. b) The
method of Dado et al. [4]. To each pointer is appended the offset in index
from the parent node to its subnodes. c) Our method. With each node,
we store the number of voxels (alternatively leaf-voxels) contained in the
subtree.

Fig. 2. In the format of Dado et al., each block stores the starting node,
the index of a block palette, the first bit in a compact list of offsets to the
block palette, and the width of each entry in that offset list.

1272 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 25, NO. 2, FEBRUARY 2019

The array of colors can be generated by traversing the
original SVO depth first such that the voxel colors will
appear in the order of a Morton curve. Then, much of the
existing coherency between colors will be retained. This is
important for the compression algorithms that will be dis-
cussed in the next section. In order to retain even more of
the coherency, the array can be reordered to follow a Hilbert
curve instead. Then, when traversing the DAG to find the
voxel index, we simply must make sure to consider the Hil-
bert ordering of each node’s children when deciding which
children precede the one we traverse to.

Regardless of which method is used to calculate the voxel
index, we have a choice of storing only leaf-voxel colors, or
the color of all nodes, in our array. In the former case, only
the number of leaf nodes contained in the subtrees of n’s
siblings are added to the index as we traverse the tree. Note
that, whether our method for decoupling geometry and col-
ors or those of previous work are used, the colors of internal
nodes will be interleaved with the colors of nodes at lower
levels. This has the unfortunate effect that, unlike traditional
2D mip-map hierarchies, the colors of internal nodes at the
same level will be scattered in memory which may lead to
poor memory access patterns. This problem is not further
explored in this paper, but we consider it an interesting
topic for future work.

4 ATTRIBUTE COMPRESSION

Having decoupled voxel colors from the geometry informa-
tion, we now search for a means of compressing the color
information without introducing too disturbing artifacts.
Since the geometry information can be very efficiently com-
pressed using a DAG, the color information will usually
consume much more memory, even if the geometry is
stored at higher resolutions. In this section, we will discuss
a number of novel approaches to compressing the color
information, as suitable in different scenarios.

4.1 Compression Using a 2D Mapping

There are an abundance of 2D image compression algo-
rithms, and modern GPUs even have specific hardware sup-
port for decompressing 2D images, so naturally it would be
desirable to be able to use such algorithms on colors of vox-
elized surfaces. Therefore, we first consider transforming
our one-dimensional array of colors into a two-dimensional
image. Image-compression algorithms rely on there being
coherence in two dimensions so the chosen mapping must
attempt to retain the coherence existing in the array when
transformed to an image. We chose to map our array onto
an image by following a 2D space-filling curve and then
applying conventional image-compression algorithms to it.
Specifically, we either generate the image using a Morton or
a Hilbert mapping. The algorithms presented in this section
enable, for the first time, the compression of voxel attributes
using conventional hardware accelerated texture compres-
sion, and off-line image compression algorithms.

4.1.1 Hardware Texture Compression

Most modern GPUs contain fixed-function hardware
designed to decompress textures during lookup at virtually
no performance cost. Being able to utilize this hardware for

looking up the color of a voxel is highly desirable, and
therefore, we have evaluated the suitability of three signifi-
cantly different such formats.

BC1. Perhaps the simplest, and certainly most supported
form of texture compression is the BC1 (also called DXT1 or
S3TC) format. Here, the image is divided into blocks of 4x4
pixels and, for each block, two 16-bit colors c1 and c2 are
stored, along with a 2-bit weight, wij per pixel. To decom-
press the color cij of the pixel ði; jÞ in the block, the dedi-
cated hardware will calculate cij ¼ ðwij=3Þc2 þ ð3� wij=3Þc1.
Thus, an approximation of 16 24-bit colors can be achieved
in 64 bits (compression ratio is 1:6).

BC7. Is a more recent format, supported by most
recent GPUs. For us, the most important difference from
BC1 is that with BC7 each block can be divided into two
or more partitions, each with its own color end points.
To specify how the blocks will be partitioned, the com-
pressed block contains a few bits choosing a partitioning
from a fixed set. This allows for much better quality in
the decompressed image when the original image is not
well described by an interpolation between two colors.
The block size for BC7 is 4x4 pixels and the compression
ratio is 1:3.

ASTC. Is similar to BC7 but much more flexible. It is only
supported by some recent GPUs. With ASTC, the block size
can be chosen quite freely and the partitioning is done by a
random number generator, rather than a hardware table,
allowing for very different partitionings than BC7.

The images we compress are very different from the nat-
ural images these formats were designed to handle, which
is very evident when using BC1 compression. Consider the
example in Fig. 4a. The colors of the original voxel-color
array describe two different surfaces and are laid out in a
Morton curve. There is a distinct jump in the color space as
we move from one of the surfaces to the other. With BC1,
the whole block will be approximated by linearly interpolat-
ing between two colors and, while the result may work
acceptably for a natural image, in our case it results in the
red surface being tainted with blue hues, and vice versa,
resulting in objectionable artifacts. This problem is greatly
alleviated by the partitioning mechanism available in the
BC7 and ASTC formats. Two surfaces that happen to
occupy the same block in the 2D image will be compressed
using two separate partitions and the decompressed colors
will be much closer to the original.

4.1.2 Conventional Off-Line Image Compression

Contrary to hardware-accelerated texture-compression for-
mats, conventional off-line image-compression techniques
do not have a requirement of being randomly accessible.
With these formats, the entire image is usually decompressed

Fig. 4. a) The original block of colors. b) With BC1, sharp contrasts are
blurred. Potentially bleeding across separate surfaces. c) Formats with
partitioning can have separate endpoints for separate surfaces.

DOLONIUS ET AL.: COMPRESSING COLOR DATA FOR VOXELIZED SURFACE GEOMETRY 1273

into raw format for display ormodifications. Therefore,much
higher compression ratios are often achievable. We have
explored whether compressing an array of voxel data with
off-line image compression, by mapping it to an image using
a space filling curve, is viable when the data shall be, e.g.,
stored to disk or transferred over a network. In our experi-
ments, as detailed in Section 5.3, we have evaluated three
well known, and distinctly different, formats. We will briefly
overview their characteristics in the remainder of this section.

JPEG. Is a common format for heavily compressing pho-
tographs and natural images. It works by first transforming
the RGB data to Y 0CbCr data and then transforming blocks
of 8x8 pixels into the frequency domain using the discrete
cosine transform. In this domain, the data is quantized
which will cause the image to be compressed in the final
entropy-coding stage. Thus, a lot of the high-frequency
information in the image is discarded, potentially causing
the same kind of artifacts as we expect from BC1.

JPEG2000. Is a more recent format where the image is
instead wavelet transformed hierarchically as a first step.
The resulting coefficients are then quantized to reduce the
number of bits required to store them and facilitate entropy
coding. While this approach would seem better suited to
avoid the problem described in Fig. 4b, quantizing a single
coefficient can affect a large region of the image, which in
turn can affect large volumes containing separate surfaces
in the voxel data.

PNG. Itself is a lossless format, but encoders often pro-
vide the option of preprocessing the image before compres-
sion so as to achieve a smaller file size. In our experiments
we have used an encoder that first reduces the number of
colors in the image by clustering in color space.

All of these formats naturally run the risk, at high com-
pression ratios, of blurring together surfaces that are actu-
ally separate and the pros and cons of each format will be
discussed in Section 5.

We would like to mention that while it is tempting to
simply pad the voxel-color array so that two surfaces of
different colors do not occupy the same block, we have not
yet found a way of achieving this without destroying either
the decoupling information in the DAG or the potential for
merging common subtrees.

4.2 Variable Bitrate Block Encoding - Fixed
Weight Size

When the compressed voxel data is to be queried in real-
time, the off-line image compression algorithms just
described are not an option. Instead, for traditional textur-
ing, the fixed bitrate block encodings described in Section
4.1.1 are used. However, as will be revealed in Section 5.1,
for high-quality decompressed images, the compression
ratio is fairly low for these formats. As reviewed in Section 2,
Dado et al. [4] suggest a compression format that lies
somewhere in the middle ground between off-line image
compression formats and fixed bitrate block encodings,
requiring a binary search to locate the containing block but
still being accessible in realtime environments. The novel
formats that will be described in this and the next section
similarly lie in this middle ground, but achieve much better
compression at similar qualities, are simpler to implement
and scale to extremely high compression rates.

4.2.1 Data Structure and Decompression

In our data structure, the array of colors is divided into
blocks that can have any length. Just like the BC1 format, a
block carries two endpoint colors, c0 and c1, and each color
in the block is described as an interpolation between these
two colors. Thus, our entire data structure consists of an
array of B block headers, bi, and an array of N weights, wj,
whereN is the total number of voxel colors. The block head-
ers contain one index specifying the voxel that begins this
block and the endpoint colors. In the first version of our
method, the weights are all of constant bitwidth, W , (usu-
ally 2-4 bits) and so are directly indexable. Our data struc-
ture is illustrated in Fig. 5.

When the voxel index, j, has been found, e.g., by raytrac-
ing a DAG, the decompressed color is calculated by first
performing a binary search through the block headers to
find the block that contains this voxel color. Then, the voxel
color is decompressed as

cj ¼ ðwj=WÞc1 þ ððW � wjÞ=WÞc0: (1)

Thus, decompressing the datastructure is very simple
and intuitively it should be able to fit our specific data quite
well. In the next section we will discuss the method with
which we choose the block division such that the decom-
pressed colors will be sufficiently close to the original.

4.2.2 Compression

We initialize our compression algorithm with the maximum
accepted error allowed for a decompressed color. This error
measure can be chosen arbitrarily, but we simply look at the
distance, e, (in sRGB or CIELAB space) between the original
and the decompressed color and supply a specific error
threshold, et. The objective now is to find the smallest set of
blocks for which this error is sufficiently low. This is obvi-
ously a very difficult problem and we make no attempt at
finding the optimal solution. Instead, we present in this sec-
tion a heuristic that works well.

First, each color is assigned its own block, and the blocks
are stored as a doubly linked list. We then greedily merge
blocks in several iterations, until no more blocks can be
merged. In each iteration, we start at the second block in the
list and calculate a score for merging with either the left or
the right block. We simply use the reciprocal of the mean
square error of all compressed colors in the potential new
block as our score, or a negative number if any color was
below the error threshold. The block is then merged with
the highest scoring neighbor. If neither neighbor could be
merged within the error threshold, the block is left as is.

Fig. 5. In our suggested format, with a fixed bitwidth per weight, the array
of voxel colors are divided into blocks of varying length that can be
described with two endpoint colors, c0 and c1 and a weight per color that
interpolates between these.

1274 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 25, NO. 2, FEBRUARY 2019

We then move two blocks to the right and repeat the merg-
ing procedure until we reach the end of the list. As long as
any block was merged with another, we then start a new
iteration at the second block in the list.

The algorithm is detailed in Algorithm 1. We addition-
ally maintain which blocks were modified in the last pass,
so that we can skip redundant calculations when neither
it nor its neighbors have changed.

Algorithm 1. Find the Set of Compressable Blocks

input: et - the error threshold
blocks- a linked list of blocks, initially one per color

Procedure Eval(block:start; block:end)
(c0, c1, w) LeastSquaresFit (block:start; block:end);
if all color errors < et then
return mean square error;

else
return -1;

Procedure Compress(et,blocks)
do
block second element in blocks;
while (not at end of list) do
leftmse Eval(block:left:start; block:end);
rightmse Eval(block:start; block:right:end);
if(leftmse > 0Þ OR ðrightmse > 0Þ then
if leftmse < rightmse then
Merge (block,block:left)

else
Merge (block,block:right)

block block:right:right;
while (any block was merged);

4.3 Variable Bitrate Block Encoding - Variable
Weight Size

In the algorithm described in the previous section, the num-
ber of bits per interpolation weight is fixed. This means that
several blocks may be described using more bits per weight
than is actually required to stay within the requested error
threshold. In this section, we show how even better results
can be obtained by carefully choosing the number of bits
per weight on a per-block basis.

4.3.1 Data Structure and Decompression

When each block can have a different number of bits per
weight, the weight required to decompress a specific color
can no longer be obtained by directly indexing a global
array of weights. Consequently, we must store a pointer
into the weight array, as well as the number of bits per
weight, in each block header. This additional information
increases the size of block headers, and can completely
overtake the reduced size of the weight array. We approach
this problem by first dividing all colors into large macro
blocks of constant size. These macro blocks are compressed
independently, and the array of macro-block headers can be
directly indexed by the color index. Each macro-block
header contains a pointer to the first weight index and an
index to the first block header for this macro block (see
Fig. 6). This reduces the number of bits required for the
weight and voxel indices in the block headers, since we can
now simply store smaller offsets relative to the macro block.

In this paper, we let a macro block be 16K colors and restrict
the maximum bitwidth to four bits per weight. If we also
store the two endpoint colors as RGB565, we are able to
store the block headers using only 64 bits, i.e., at no extra
cost compared to the algorithm in the previous section.

This is achieved in the following way: The two endpoint
colors require 16 bits each. The voxel-index offset, bits/
weight, and weight-index offset need to fit in the remaining
32 bits. Since every header now only needs to address up to
16K colors we can store the voxel index offset in 14 bits.
Also, by restricting the maximum number of bits per weight
to four, we only need to be able to address up to 64K indi-
vidual weight bits, i.e., we need 16 bits for the weight-index
offset. The remaining 2 bits will indicate whether the block
has 1,2,3 or 4 bits per weight. For the zero bits per weight
case, we realize that we will never utilize the maximum
value of the 16 bit weight-index offset, since we have
reserved precision for the case where every weight has four
bits and, thus, the maximum weight-index offset will never
exceed 64K � 3. Accordingly, we can use one of those val-
ues as a sentinel since for the zero bit case we do not need to
address any weights.

The only overhead now is the macro blocks, which
require two 64 bit words each. This results in 1/128 extra
bits per color and can, in all realistic cases, be considered
negligible.

The decompression is similar to that of the algorithm in
the previous section. We first do a direct lookup to find
which macro block the voxel index belong to. We extract the
first block header index for that and the next macro block,
giving us a range of blocks in which to search for the color.
We locate the block, by a binary search, and simply use the
weight index offset in the macro block and the weight-index
offset in the header to calculate the final weight index. An
added benefit of this is that, since we first do the direct
lookup of the macro blocks, we have effectively reduced
the number of steps in the binary search, which improves
lookup performance.

Fig. 6. With variable weight sizes, each block specifies the number of
(0-4) bits per weight. For each sequence of 16K voxel colors, a macro
block points to the first block and weight bit. Each block then provides
the offsets to block and weights from its macro block.

DOLONIUS ET AL.: COMPRESSING COLOR DATA FOR VOXELIZED SURFACE GEOMETRY 1275

4.3.2 Compression

Wefirst build a tree of potential compressed blocks using dif-
ferent bitwidths for weights, and then find a cut through this
tree containing the set of blocks that minimizes the required
size. We build the tree bottom up by first compressing the
colors, as in the algorithm in the previous section, using zero
bits per weight. This set of compressed blocks make up the
leaf level of our tree. To calculate the parents we then use the
compressed set of blocks, and try to compress them further,
this time using one more bit per weight. We repeat this pro-
cess until we have reached the maximum number of bits per
weight. This way, the color range of a parent will equal the
combined ranges of its children.

Algorithm 2. Compress Blocks Using Variable Weight
Bits per Block

input: et - the error threshold
oldblocks a linked list of blocks, initially one per color

#Compute the block tree

for (min bitrate to max bitrate) do
blocks Compress (et, oldblocks, bitrate);
AddToTree (blocks);
oldblocks blocks;

Do a tree cut to find least cost nodes

for (each level above leaves, bottom up) do
forall nodes in level do
if (my cost <

P
children cost) then

RemoveChildren (node);
else
if (root_node) then
MakeChildrenRoots (node);

else
ConnectChildrenToParent (node);

Remove (node);
#Push to final solution

forall (remaining nodes) do
PushToSolution (node);

To perform the cut, we process the nodes one level at a
time in a bottom up order. For a given node, if the combined
memory cost of its children is less than that of the node
itself, we remove that node and connect the children to the

parent of that node. Otherwise we remove the children.
When we have processed all nodes we end up with a set of
blocks which is our final solution. The procedure for the
compression is detailed in Algorithm 2.

5 RESULTS

To evaluate the compression algorithms, we have chosen a set
of four very different types of scenes, shown inTable 1. SPONZA

and EPIC are voxelized video-game scenes with path-traced
colors. BODY is a high-resolution mesh with high-resolution
color textures obtained by 3D scanning. CAMPUS is a university
campus captured by a laser scanner, where the original point
cloud is approximately 8 GB of data (500M points) and has
been voxelizedwithout any surface reconstruction.

All scenes have been converted to a geometry DAG as
described by K€ampe et al. [3] with voxel-color connections
inserted as described in Section 3. Once the one-dimen-
sional array of colors has been obtained, we compress
that using a number of different algorithms listed below.
We evaluate the quality of the compressed data first glob-
ally by calculating the Global Root Mean Square Error
(GRMSE) of all compressed colors compared to the ground
truth. The error is the distance, e, (in sRGB space) between
the original and decompressed color. The GRMSE provides
some notion of the quality of the compressed data as a
whole, but, being the average of the error of all voxel colors,
might hide local artifacts that affect only a few voxels.

To mitigate this problem, we also chose a number of view-
points in each scene and render an image for each. For these
images, we calculate the Root Mean Squared Error (RMSE) and
Multi Scale Structural Similarity Index (MS-SSIM). These num-
bers correspond reasonably to how the difference in quality of
the rendered images are perceived. However, especially at
lower quality settings, which compression method to prefer
can be highly subjective. Our complete results occupy too
much space to fit in the paper and are instead supplied as sup-
plementary material, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TVCG.2017.2741480, or on the authors homepage.1

TABLE 1
The Scenes Used in the Evaluation of Our Algorithm

The SVO size reported is what would be obtained with a traversable SVO where each internal node is two 32-bit words (mask and
pointer), and leaf nodes are 4x4x4 blocks described by a 64 bit word.

1. http://www.cse.chalmers.se/�dolonius/dolonius2017tvcg/
supplementary

1276 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 25, NO. 2, FEBRUARY 2019

http://doi.ieeecomputersociety.org/10.1109/TVCG.2017.2741480
http://doi.ieeecomputersociety.org/10.1109/TVCG.2017.2741480
http://www.cse.chalmers.se/dolonius/dolonius2017tvcg/supplementary
http://www.cse.chalmers.se/dolonius/dolonius2017tvcg/supplementary
http://www.cse.chalmers.se/dolonius/dolonius2017tvcg/supplementary

To inspect the scene, we have implemented a real-time
raytracer in CUDA that calculates the primary hit point per
pixel by intersecting a ray with the DAG. The raytracer out-
puts a voxel coordinate per pixel, and in a second pass, the
color is obtained from the voxel color data. In the two Vari-
able Bitrate Block-Encoding algorithms, the compressed
data is stored and evaluated on the GPU, but for the other
formats, we decompress the data on the CPU before storing
it on the GPU. While we could have read the hardware tex-
ture formats in an OpenGL compute or fragment shader,
our CUDA implementation does not support that. In the
cases where the uncompressed data is too large to reside on
the GPU, our implementation falls back to an identical CPU
path for the color lookup.

For the hardware texture formats and the conventional
image compression algorithms, the voxel-color array is first
transformed into an image, as described in Section 3, and
then compressed using off-the-shelf software. Since our
voxel data is often very large, we have split it into partitions
that each make up one 2048x2048 image and compress these
separately. If the compressed textures were to be accessed
on the GPU, each compressed image could be read into a
slice of an array texture. This also lets us control the maxi-
mum amount of padding required to fit our data into a
square texture.

� BC1, BC7 AMD Compressonator.
� ASTC ARM-software ASTC-encoder.
� Ours Our implementation of the algorithm described

in Section 4.2.
� Dado Our implementation of the algorithm described

in the paper by Dado et al. [4].
� JPG, JPG2000 Image Magick.
� PNG pngout and pngquant [24], [25].
The error, e, has been calculated in sRGB space. We have

also run our experiments using the distance in CIELAB
space, but found the results to be slightly worse in all cases,
both for our algorithms and that by Dado et al.

All experiments have been performed for both the
Hilbert and Morton order of both the depth-first traversal
and the 2D space-filling curves. However, using a Hilbert-
order was found to consistently provide very minor
improvements. Since the Morton order is very common due
to its simplicity, we therefore choose to only present results
using the Morton order.

5.1 Hardware Texture Formats

Table 2 shows the results obtained when transforming the
voxel color data to a 2D image, using a space-filling curve
as suggested in Section 4.1, and compressing these images
using hardware accelerated texture compression formats.
With the simpler BC1 format, we obtain a compression of
16 percent, but compression artifacts are clearly visible.
One source of artifacts are the discretization and color shifts
that are inherent in the format, but we also see, especially
in the SPONZA scene, that unexpected voxel colors turn up

TABLE 2
Comparison of Hardware Texture Formats

TABLE 3
Quality Comparison for Methods Selected in Table 4 at

Approximately Equal Compression Ratio

DOLONIUS ET AL.: COMPRESSING COLOR DATA FOR VOXELIZED SURFACE GEOMETRY 1277

on otherwise smooth surfaces as explained in Section 4.1.1.
A notable exception is the BODY scene, where the BC1 algo-
rithm performs very well. This is most likely due to the
scene having few thin or overlapping features, so that the
vast majority of 2D blocks will contain only colors from one
surface.

The BC7 and ASTC formats both generate high quality
images and very low global errors, and the obtained com-
pression is identical at 33 percent. In Table 9, we show how
different formats degrade with lower quality settings. The
BC1 and BC7 formats do not allow for different settings, but
with the ASTC format, we are able to choose to use even
fewer bits per texel. While the quality of results quickly
degenerates, the data can become very small and there may
be scenarios, such as when the voxel data is used for glossy
indirect reflections, where these settings are viable.

5.2 Variable Bitrate Block-Encoding

In Table 4, we compare our novel compression schemes,
described in Sections 4.2 and 4.3, with our own implementa-
tion of the algorithm suggested by Dado et al. [4]. For our
FWS format, the results are similar between the first three
scenes. The compressed data is 17-20 percent of the original
with virtually no perceptible error, 13-15 percent with very
high quality, and we can push it down towards 12 percent
(optimal with the chosen bitwidth for weights) with quality
that can still be acceptable in some cases.

All results presented for our format use the 16-bit
RGB565 format to store the color endpoints in the blocks.
This gives slightly better compression results while achiev-
ing the same quality as if we use 24-bit color endpoints. We
use three bits per weight; This gives the best result in almost
all cases (the exception being a few of the highest quality
experiments, where the size of the block headers strongly
outweigh the size of the weights array).

The last scene, CAMPUS, is very challenging for both our
and Dado et al.’s algorithms. There are two main reasons
for this; First, the color information in the scanned data is
merged from different cameras at different viewpoints and
the real-world materials are often highly view-dependent.
Thus, points on the same surface often have highly irregular

colors even though they appear smooth in reality. Also, the
resolution of the data is relatively low, so thin features (e.g.,
the many trees that are part of the scan) will cause very
noisy colors to begin with. Thus, at the current resolution,
our format with lower quality settings can be used if some
error is acceptable, but otherwise, it is preferable to use our
BC7 or ASTC formats described above.

The quality results for the variable-weight compression
scheme (described in Section 4.3) are similar to those of the
fixed weight compression scheme for all scenes. Not unex-
pectedly we generally have a slightly higher GRMSE for
variable bit weights, since we can make a more aggressive
approximation by reducing the number of interpolation
points while respecting the error threshold, ignoring the
degradation in average quality. Conversely, the FWS algo-
rithm can be seen as having a higher quality than requested
in these cases. Meanwhile, with the VWS algorithm, we
have further reduced the compressed size by around 16 per-
cent for the high quality encodings and up to 71 percent for
lower qualities. Unlike the fixed-weight format, which has a
memory cost per voxel limited by its weights, the variable-
weight format has virtually no lower bound on the degree
of compression it can achieve. In Table 7, we can see that at
the lowest quality for the SPONZA scene, we end up with 0.9
bits per voxel for the colors.

In the SPONZA scene the variable-weight format and Dado
et al.’s format perform much better than in any of the other
scenes. We have investigated this further to demonstrate
some interesting properties of these formats.

The main reason for these results, it turns out, is that the
SPONZA scene contains one large box that lies inside the walls
of the model and is invisible from any reasonable viewpoint.
This box comprises almost 50 percent of all the voxels in the
scene but, as it receives no light, all of them are completely
black. When a large block can be described by a single color,
the fixed weight size version of our algorithm will find the
block but will still require a fixed number of bits per color in
the block to store the weight. With Dado et al.’s format, such
blocks will find that they can use a block palette with one
entry, and so they do not have to store any per-voxel informa-
tion. Similarly, the variable-weight version of our algorithm

TABLE 4
Comparison of Variable Bitrate Block-Encoding Formats

SPONZA EPIC BODY CAMPUS

Comp. GRMSE RMSE MSSSIM Comp. GRMSE RMSE MSSSIM Comp. GRMSE RMSE MSSSIM Comp. GRMSE RMSE MSSSIM

FWS

et :6.38 18.8% 1.12 1.42 0.976 20.2% 1.81 1.34 0.994 17.2% 1.99 1.18 0.995 44.2% 1.94 1.29 0.953
et :9.56 15.5% 1.63 2.12 0.951 15.3% 2.58 1.95 0.988 13.3% 2.87 1.8 0.99 29.0% 2.62 1.91 0.915
et :12.8 14.2% 2.1 2.9 0.914 13.9% 3.3 2.56 0.982 12.7% 3.7 2.35 0.985 23.2% 3.27 2.65 0.827
et :25.5 13.1% 3.35 5.46 0.82 12.7% 5.93 5.23 0.943 12.5% 5.85 4.09 0.951 15.4% 5.69 5.04 0.633

VWS

et :6.38 11.0% 1.26 1.59 0.966 15.9% 1.84 1.42 0.993 14.2% 1.93 1.21 0.993 37.1% 2.07 1.46 0.925
et :9.56 7.87% 1.83 2.35 0.926 11.1% 2.62 2.09 0.984 11.0% 2.84 1.87 0.983 23.5% 2.85 2.23 0.811
et :12.8 6.15% 2.24 3.09 0.872 9.03% 3.35 2.82 0.972 9.54% 3.67 2.49 0.971 17.9% 3.56 2.83 0.711
et :25.5 3.78% 3.64 5.52 0.747 5.17% 5.82 6.01 0.907 6.15% 6.78 4.52 0.926 9.35% 6.13 4.95 0.519

Dado

colors: all 37.2% 0.0 0.0 1.0 89.9% 0.0 0.0 1.0 65.2% 0.0 0.0 1.0 103.0% 0.0 0.0 1.0
16K 21.2% 0.977 1.1 0.98 31.9% 1.69 1.17 0.994 35.0% 0.856 0.527 0.998 39.3% 2.06 1.4 0.939
4K 17.1% 1.75 1.81 0.959 27.9% 2.9 1.95 0.986 31.7% 1.5 0.797 0.997 31.7% 3.52 2.35 0.86
2K 15.2% 2.23 2.33 0.939 25.6% 3.82 2.46 0.98 30.8% 1.91 0.96 0.995 29.1% 4.54 3.08 0.82
256 11.2% 5.0 5.62 0.799 18.8% 8.24 5.48 0.923 24.1% 4.25 2.2 0.977 21.4% 11.1 8.01 0.606

Our and Dado et al.’s formats are compared at varying quality settings. The highlighted settings are chosen as being of approximately equal compression ratio as
the FWS result with error-threshold 9.56.

1278 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 25, NO. 2, FEBRUARY 2019

can store the entire block with a single, zero bits per weight,
block header.We demonstrate that this is indeed the cause of
the anomalies in Table 5, wherewe have removed the hidden
box from the scene and re-run the experiments. As expected,
the results for the fixed-weight format remain relatively
unchanged, while the variable-weight and Dado et al.’s for-
mat have degraded. On all scenes, our variable-weight for-
mat is clearly the better choice, offering very high quality at
compression ratios that cannot be reached with any of the
other algorithms.

Finally, in Table 6 we compare the compression ratio and
quality obtained when compressing only the leaf node col-
ors (as in Table 4) to compressing the colors of all nodes.
The colors of internal nodes are obtained by averaging the
colors of their immediate sub-nodes, which means that
many of the new colors will be very similar to the sub-
sequent colors in the array and end up in the same com-
pressed block when using our FWS or VWS methods.
Consequently, for our methods, the compression ratio is
generally better when considering all colors and the quality
is not affected. With the algorithm of Dado et al. [4], adding
the colors of all internal nodes means that more disparate
colors must be quantized to a global palette of fixed size,
and thus, while the compression ratio is slightly reduced,
the quality also degrades slightly.

5.3 Off-Line Image Compression Formats

Wehave also compressed our voxel data using off-line image
compression formats as described in Section 4.1.2, and the
results are available in Table 8. Table 9 shows what type of
artifacts are introduced and many more examples are avail-
able in the supplementary material, available online. JPG
and JPG2K can both produce fairly high quality results at
compressed sizes from 15-20 percent.Which of these two for-
mats is preferable at lower quality settings is highly subjec-
tive, but we note that, as expected, JPEG2K introduces noise
and color shifts on large continuous surfaces, while JPG
introduces disturbing artifacts where surfaces are nearby
and the voxels fall in the same 8x8 block. PNG compression
of color-quantized data appears surprisingly efficient when

only considering the GRMSE numbers in Table 8, but in the
second row of PNG images in Table 9, we can see that
the compression comes at the cost of some areas having
completely incorrect hues.

The compressed data is not directly accessible from,
e.g., a shader or raytracer, but due to the simplicity of
implementation and ready availability of software for 2D

TABLE 5
A Detailed Evaluation of the SPONZA Scene

ORIGINAL MODIFIED

Comp. GRMSE Comp. GRMSE

FWS et :6.38 18.8% 1.12 20.3% 1.58
et :9.56 15.5% 1.63 16.0% 2.3
et :12.8 14.2% 2.1 14.7% 2.91
et :25.5 13.1% 3.35 13.1% 4.56

VWS et :6.38 11.0% 1.26 15.8% 1.7
et :9.56 7.87% 1.83 11.7% 2.43
et :12.8 6.15% 2.24 9.26% 2.98
et :25.5 3.78% 3.64 5.73% 5.47

Dado colors: all 37.2% 0.0 65.3% 0.0
16K 21.2% 0.977 31.7% 1.29
4K 17.1% 1.75 26.2% 2.35
2K 15.2% 2.23 23.7% 2.99
256 11.2% 5.0 17.0% 7.16

ORIGINAL is the original scene and in MODIFIED we have removed the redundant
geometry.

TABLE 6
Results of Compressing the Colors of all Nodes to Only Leaf

Nodes for Error Thresholds Selected in Table 4

The image shows the four highest levels of detail for a view of the EPIC scene.

TABLE 7
Bits per Voxel Color for Each Scene and Quality Setting

Bits per voxel SPONZA EPIC BODY CAMPUS

FWS

et :6.38 4.5 4.85 4.13 10.6
et :9.56 3.72 3.66 3.18 6.97
et :12.8 3.42 3.33 3.04 5.56
et :25.5 3.13 3.04 3.0 3.7

VWS

et :6.38 2.64 3.82 3.4 8.91
et :9.56 1.89 2.65 2.65 5.64
et :12.8 1.48 2.17 2.29 4.29
et :25.5 0.906 1.24 1.48 2.24

Dado

colors: all 8.94 21.6 15.6 24.7
16K 5.08 7.66 8.4 9.44
4K 4.09 6.69 7.61 7.61
2K 3.66 6.14 7.38 6.98
256 2.69 4.52 5.77 5.14

Cost of geometry not included.

DOLONIUS ET AL.: COMPRESSING COLOR DATA FOR VOXELIZED SURFACE GEOMETRY 1279

image compression, we believe these formats could be a
good choice for compressing voxel data that is to be trans-
ferred over a network or stored to disk. It should be noted,
however, that while we have not done a full analysis,
voxel data compressed with either of the algorithms dis-
cussed in Section 4.2 can be further compressed by
approximately 50 percent using off-the-shelf compression
software (e.g., zip).

5.4 Performance

Compression. The BC1, BC7, ASTC, JPG, JP2K, and PNG
formats have all been compressed using external software.
For the BC7 and ASTC formats, we have compressed using
exhaustive search to find the optimal block configurations,

and this is very time consuming (approximately 20h for the
EPIC scene). We have also tried using faster settings where
heuristics are used to improve speed and the results have
been almost as good at a fraction of the time. For the rest of
the image compression formats, compression time has at
worst been a few minutes. For our implementation of Dado
et al.’s algorithm, no effort has been put into optimization
of the code, and on a single core of an Intel Core i7 3930K,
compression took approximately 2h. The version of our
own implementation that was used for all measurements
has about the same performance as that of Dado et al., but
we have subsequently optimized this algorithm by moving
parts to the GPU. With that version, the EPIC scene took only
7 minutes to compress.

TABLE 8
Comparing the Quality of Voxel Data Compressed Using Conventional Off-Line Image-Compression Formats

SPONZA EPIC BODY CAMPUS

quality setting Comp. GRMSE RMSE MSSSIM Comp. GRMSE RMSE MSSSIM Comp. GRMSE RMSE MSSSIM Comp. GRMSE RMSE MSSSIM

JPG 95 11.7% 1.75 1.95 0.956 14.8% 2.13 1.94 0.987 14.9% 2.02 1.35 0.996 21.0% 2.91 1.74 0.924
85 6.42% 3.22 4.6 0.869 7.34% 3.76 4.96 0.945 7.49% 4.04 2.73 0.988 10.4% 5.59 3.37 0.847
75 4.71% 4.34 6.52 0.809 5.04% 4.73 7.44 0.91 5.09% 5.07 3.33 0.983 7.07% 7.3 4.4 0.801
50 3.08% 6.44 9.47 0.727 3.04% 6.1 11.7 0.853 3.05% 6.14 3.95 0.975 4.08% 9.92 5.7 0.718

JPG2K x5 20.1% 0.929 1.12 0.981 20.0% 1.71 2.41 0.982 20.1% 1.33 0.708 0.997 20.4% 2.88 1.95 0.893
x10 10.1% 2.06 2.44 0.92 10.0% 3.19 5.41 0.938 10.0% 2.77 1.44 0.991 10.3% 5.07 3.43 0.75
x20 5.09% 4.25 5.67 0.777 5.01% 5.31 11.4 0.823 5.01% 4.86 2.69 0.976 5.17% 7.85 5.22 0.607
x40 2.56% 8.27 11.1 0.593 2.51% 7.75 18.1 0.692 2.51% 6.96 4.01 0.956 2.58% 11.0 7.55 0.491

PNG lossless 29.8% 0.0 0.0 1.0 52.7% 0.0 0.0 1.0 50.2% 0.0 0.0 1.0 89.0% 0.0 0.0 1.0
100 12.4% 0.956 2.14 0.967 21.5% 1.9 2.37 0.985 25.6% 0.985 0.73 0.998 21.7% 3.26 1.77 0.925
70 4.9% 2.95 5.69 0.788 10.4% 3.86 3.35 0.97 7.57% 4.2 2.35 0.978 18.6% 3.78 2.11 0.892
30 3.08% 5.14 8.47 0.641 6.42% 6.34 5.72 0.93 4.82% 6.66 4.06 0.932 11.6% 6.26 3.72 0.736
10 2.27% 6.68 11.3 0.515 4.87% 8.19 7.05 0.897 3.56% 8.22 5.24 0.889 8.8% 8.1 4.59 0.639

TABLE 9
Change in Image Quality (RMSE) with Compression Rate per Method

1280 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 25, NO. 2, FEBRUARY 2019

Lookup. In the table below, we present the time taken to
render the images shown in Table 3 at 1024 x 1024 resolu-
tion, on a GTX 1080 graphics card, using our methods and
that of Dado et al., both when using per-pointer and per-
node offsets to calculate the voxel-color index.

SPONZA EPIC BODY CAMPUS

Raytracing 2.1 ms 3.4 ms 4.8 ms 2.7 ms

Color lookup (only leaf nodes)

FWS per-pointer 0.4 ms 0.4 ms 0.5 ms 0.5 ms
per-node 0.6 ms 0.7 ms 0.7 ms 0.9 ms

VWS per-pointer 0.3 ms 0.4 ms 0.5 ms 0.4 ms
per-node 0.5 ms 0.6 ms 0.7 ms 0.7 ms

Dado per-pointer 0.4 ms 0.4 ms 0.6 ms 0.5 ms
per-node 0.6 ms 0.7 ms 0.7 ms 0.8 ms

Color lookup (all nodes)

FWS per-pointer 0.4 ms 0.4 ms 0.5 ms 0.5 ms
per-node 0.7 ms 0.8 ms 0.7 ms 0.9 ms

VWS per-pointer 0.3 ms 0.4 ms 0.5 ms 0.4 ms
per-node 0.6 ms 0.7 ms 0.7 ms 0.8 ms

Dado per-pointer 0.4 ms 0.4 ms 0.6 ms 0.5 ms
per-node 0.7 ms 0.8 ms 0.8 ms 0.9 ms

Geometry DAG size

per-pointer 15 MB 336 MB 168 MB 184 MB
per-node 9 MB 189 MB 96 MB 118 MB

As expected, the lookup performance is somewhat faster
when using per-pointer offsets (1.2x - 1.92x), but the result-
ing DAG-sizes are also significantly larger (1.5x - 1.8x).
Although using variable bit-widths for weights requires one
more level of indirection in decompressing a color, the intro-
duction of macro blocks reduces the range of blocks in which
a binary search is required, so VWS performance is on par
with, or better than, FWS. We also present the times taken to
look up the leaf colors when the colors of all nodes are stored.
There is only a very slight increase in these times, since leaf
colors for nearby voxels are still usually close to each other
despite having interleaved the colors of internal nodes.

6 CONCLUSION AND FUTURE WORK

We have described a method for decoupling DAG geometry
and attribute data that has a very small impact on the final
size of the DAG. We have also described a number of meth-
ods for lossy compression of the voxel attribute data. With
our method for decoupling colors from geometry, the
voxel-color data is ordered according to a 3D space-filling
curve and contains much color coherency. We have shown
that by transforming the color data to an image using a 2D
space-filling curve, much of that coherency is retained, and
conventional image compression formats, both off-line for-
mats and hardware accelerated texture formats, can be used
to achieve high quality results for compressed voxel data. In
particular we have shown that, with the BC7 and ASTC for-
mats, we can effortlessly provide 3x compression with very
little loss in quality, enabling extremely fast color lookups
from GPU shaders. Finally, we have suggested a novel real-
time format, and compression algorithm, that consistently
outperforms previous work and usually achieves better
than twice the compression for equal quality.

We believe much higher compression ratios should be
obtainable for an off-line format, and will, in the future,
explore whether off-line image compression algorithms can
be modified to better suit voxel-color data.

ACKNOWLEDGMENTS

This work was supported by the Swedish Research Council
under Grant 2014-4559. The EPIC scene is distributed with
the Unreal Development Kit by Epic Games. The BODY scene
is a freely available scene from Ten24. SPONZA is created by
Frank Meinl at Crytek. The CAMPUS scene is courtesy of Jona-
than Berglund, Erik Lindskog and Bj€orn Johansson, and was
obtained as described in their recent paper [26].

REFERENCES

[1] D. Dolonius, E. Sintorn, V. K€ampe, and U. Assarsson,
“Compressing color data for voxelized surface geometry,” in Proc.
21st ACM SIGGRAPH Symp. Interactive 3D Graph. Games, 2017,
Art. no. 13. [Online]. Available: http://www.cse.chalmers.se/
dolonius/dolonius2017i3d.pdf

[2] C. Crassin, F. Neyret, M. Sainz, S. Green, and E. Eisemann,
“Interactive indirect illumination using voxel cone tracing,” Com-
put. Graph. Forum, vol. 30, no. 7, pp. 1921–1930, Sep. 2011.

[3] V. K€ampe, E. Sintorn, and U. Assarsson, “High resolution sparse
voxel DAGs,” ACM Trans. Graph., vol. 32, no. 4, 2013, Art. no. 101.

[4] B. Dado, T. R. Kol, P. Bauszat, J.-M. Thiery, and E. Eisemann,
“Geometry and attribute compression for voxel scenes,” Comput.
Graph. Forum, vol. 35, no. 2, pp. 397–407, May 2016.

[5] B. R. Williams, “Moxel DAGs: Connecting Material Information to
High Resolution Sparse Voxel DAGs,” Master’s thesis, Comput.
Sci. Dept., California Polytechnic State Univ., San Luis Obispo,
CA, USA, 2015.

[6] S. M. Rubin and T. Whitted, “A 3-dimensional representation for
fast rendering of complex scenes,” SIGGRAPH Comput. Graph.,
vol. 14, no. 3, pp. 110–116, Jul. 1980.

[7] C. L. Jackins and S. L. Tanimoto, “Oct-trees and their use in repre-
senting three-dimensional objects,” Comput. Graph. Image Process.,
vol. 14, no. 3, pp. 249–270, 1980.

[8] D. Meagher, “Geometric modeling using octree encoding,” Com-
put. Graph. Image Process., vol. 19, no. 2, pp. 129–147, 1982.

[9] K. Museth, “VDB: High-resolution sparse volumes with dynamic
topology,”ACMTrans. Graph., vol. 32, no. 3, pp. 27:1–27:22, Jul. 2013.

[10] J. Elseberg, D. Borrmann, and A. N€uchter, “One billion points in
the cloud–an octree for efficient processing of 3D laser scans,” J.
Photogrammetry Remote Sens., vol. 76, pp. 76–88, 2013.

[11] E. Gobbetti and F. Marton, “Far voxels: A multiresolution frame-
work for interactive rendering of huge complex 3D models on
commodity graphics platforms,” ACM Trans. Graph., vol. 24, no. 3,
pp. 878–885, Jul. 2005.

[12] E. Gobbetti, F. Marton, and A. J. Iglesias Guiti�an, “A single-pass
GPU ray casting framework for interactive out-of-core rendering
of massive volumetric datasets,” Visual Comput., vol. 24, no. 7,
pp. 797–806, 2008.

[13] C. Crassin, F. Neyret, S. Lefebvre, and E. Eisemann, “GigaVoxels:
Ray-guided streaming for efficient and detailed voxel rendering,”
inProc. ACMSymp. Interactive 3DGraph. Games, Feb. 2009, pp. 15–22.

[14] S. Laine and T. Karras, “Efficient sparse voxel octrees,” IEEE
Trans. Vis. Comput. Graph., vol. 17, no. 8, pp. 1048–1059, Aug. 2011.

[15] R. E. Webber and M. B. Dillencourt, “Compressing quadtrees via
common subtree merging,” Pattern Recognit. Lett., vol. 9, no. 3,
pp. 193–200, 1989.

[16] M. S. Parsons, “Generating lines using quadgraph patterns,” Com-
put. Graph. Forum, vol. 5, no. 1, pp. 33–39, Mar. 1986.

[17] E. Parker and T. Udeshi, “Exploiting self-similarity in geometry
for voxel based solid modeling,” in Proc. 8th ACM Symp. Solid
Model. Appl., 2003, pp. 157–166.

[18] E. Sintorn, V. K€ampe, O. Olsson, and U. Assarsson, “Compact pre-
computed voxelized shadows,” ACM Trans. Graph., vol. 33, no. 4,
2014, Art. no. 150.

[19] V. K€ampe, E. Sintorn, and U. Assarsson, “Fast, memory-efficient
construction of voxelized shadows,” in Proc. ACM 19th Symp.
Interactive 3D Graph. Games, 2015, pp. 25–30.

DOLONIUS ET AL.: COMPRESSING COLOR DATA FOR VOXELIZED SURFACE GEOMETRY 1281

http://www.cse.chalmers.se/dolonius/dolonius2017i3d.pdf
http://www.cse.chalmers.se/dolonius/dolonius2017i3d.pdf

[20] A. Jaspe Villanueva, F. Marton, and E. Gobbetti, “SSVDAGs:
Symmetry-aware sparse voxel DAGs,” in Proc. ACM 20th ACM
SIGGRAPH Symp. Interactive 3D Graph. Games, Feb. 2016, pp. 7–14.

[21] S. Lefebvre and H. Hoppe, “Perfect spatial hashing,” ACM Trans.
Graph., vol. 25, no. 3, pp. 579–588, Jul. 2006.

[22] S. Guthe, M. Wand, J. Gonser, andW. Straßer, “Interactive render-
ing of large volume data sets,” in Proc. IEEE Vis., 2002, pp. 53–60.

[23] M. Balsa Rodriguez, et al., “State-of-the-art in compressed GPU-
based direct volume rendering,” Comput. Graph. Forum, vol. 33,
no. 6, pp. 77–100, Sep. 2014.

[24] K. Silverman, Ken silverman’s utility page, 2016. [Online].
Available: http://advsys.net/ken/utils.htm

[25] K. Lesi�nski, pngquant, 2016. [Online]. Available: https://
pngquant.org/

[26] E. Lindskog, J. Berglund, J. Vallhagen, and B. Johansson,
“Visualization support for virtual redesign of manufacturing
systems,” Procedia CIRP, vol. 7, pp. 419–424, 2013. [Online].
Available: http://www.sciencedirect.com/science/article/pii/
S2212827113002783

Dan Dolonius received the MSc degree in
applied mathematics. He is working toward the
PhD degree in computer graphics at Chalmers
University of Technology. He has worked at Auto-
desk with their render engines and applications.
His research interests include real-time render-
ing, compression, and GPU algorithms.

Erik Sintorn received the PhD degree from
Chalmers University of Technology, in 2013,
where he now is an assistant professor in the
Computer Graphics Research Group, Depart-
ment of Computer Science and Engineering. His
research is focused on real-time shadows, trans-
parency, and global illumination.

Viktor K€ampe recieved the MS degree in engi-
neering physics and the PhD degree in computer
science and engineering from Chalmers Univer-
sity of Technology, Sweden, in 2011 and 2016,
respectively. His research interests include highly
detailed voxel geometry and visibility, in both
static and temporal varying scenes, and free
viewpoint video.

Ulf Assarsson is a professor in computer
graphics in the Department of Computer Science
and Engineering, Chalmers University of Tech-
nology. His main research interests include real-
time rendering, global illumination, many lights,
GPU-Ray Tracing, and hard and soft shadows.
He is co-author of the book Real-Time Shadows.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1282 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 25, NO. 2, FEBRUARY 2019

http://advsys.net/ken/utils.htm
https://pngquant.org/
https://pngquant.org/
http://www.sciencedirect.com/science/article/pii/S2212827113002783
http://www.sciencedirect.com/science/article/pii/S2212827113002783

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

